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ABSTRACT

A summary of the work, aimed to reformulate analytically the theory of intelligent ma-

chines is presented. The functions of an Intelligent Machines are executed by Intelligent

Controls. The Principle of Increasing Precision with Decreasing Intelligence is used to form a

hierarchical structure of the control systems. Distributed Intelligence in compatible with such

a structure when it is used for teams of intelligent machines or cooperating coordinators within

the machine. The three levels of the Intelligent Control, e.g., the Organization, Coordination

and Execution Levels are described as originally conceived. New designs as Neural-nets for

the organization level and Petri- nets for the coordination level are proposed. Application to

Intelligent Robots for space exploration are suggested.

1. INTRODUCTION

In the past fifteen years a considerable effort has been made to develop a theory for Intel-

ligent Machines and create working models to implement such a theory (Albus 1985, Meystel

1986, Pao 1986, Saridis 1985, Zames 1979, etc.). Such machines were designated to perform
anthropomorphic tasks with minimum interaction with a human with potential applications

on robotic systems designed to operate in remote, inaccessible, hazardous, unfamiliar or other
environments as need appeared.

Since the task was enormous and are technologies rather limited, the results of such an

effort have been meager. The theoretic efforts that have come into the picture to reinforce

the development of Intelligent Machines have taken two distinct directions: the logic-based

approach (Nielsen-Genesereth 1988) and the analytic approach (Saridis 1988, Meystel 1986).

The results on the analytic approach, which concerns this particular paper, have been

regularly reported by the author (Saridis 1977. Saridis 1979. Saridis 1983. Saridis 1985c.

Saridis 1988) and have reached a level of maturity both theoretically and experimentally. A

summary of the work produced is given in the next section.

z

m



n

L

m

However. with the progress of the research and the better understanding of the process,

some modifications and refinements of the theory are introduced in this paper to strengthen,

simplify and integrate better the proposed design of Intelligent Machines.

The refinements introduced herein are due to the better understanding of some of the

basic concepts of the Intelligent Machines, e.g., the Principle of Increasing Precision with

Decreasing Intelligence (IPDI), the ability to develop Boltzmann Machines and Petri Nets as

realizations of Inference Engines and Linguistic Decision Schemata, respectively, and the use

of entropy measures for the evaluation of the performance at every level of the machine.

A review of the analytic formulation of the Intelligent Machines is given in the next
section followed by a set of pertinent definitions and a discussion on the principle of IPDI.

A brief explanation of the development of the Boltzmann machine as an inference engine for

the organization level is next. The following section presents details on the three levels of

the Intelligent Machine. The next section places the Intelligent Machine in a Distributed

Intelligence environment, followed by discussions and conclusions.
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2. REVIEW OF THE ANALYTIC FORMULATION OF INTELLIGENT CONTROLS

Intelligent Machines require control efforts in order to perform intelligent functions such

as simultaneous utilization of a memory, learning, or multilevel decision making in response to

"fuzzy" or qualitative commends. Intelligent Controls have been developed by Saridis (1977,

1983) to implement such functions. The utilize the results of cognitive systems research

effectively with various mathematical programming control techniques.

Cognitive systems have been traditionally developed as part of the field of artificial intel-

ligence to implement, on a computer, functions similar to one encountered in human behavior

(Albus 1975. Minsky 1972. Winston 1977. Nilsson 1969. Pao 1986). Such functions as speech

recognition and analysis, image and scene analysis, data base organization and dissemination.

learning and high- level decision making, have been based on methodologies emanating from

a simple logic operation to advances reasoning as in pattern recognition, linguistic and fuzzy

set theory approaches. The results have been well documented in the literature.

Various pattern recognition, linguistic or even heuristic methods have been used to ana-

lyze and classify speech, images or other information coming in through sensory devices as

part of the cognitive system (Birk and Kelley 1981). Decision making and motion control

were performed by a dedicated digital computer using either kinematic methods, like tra-

jectory tracking, or dynamic methods based on compliance, dynamic programming or even

approximately optimal control (Saridis and Lee 1979).

The theory of Intelligent Control systems, proposed by Saridis (1979) combines the pow-

erful high-level decision making of the digital computer with advanced mathematical modeling

and synthesis techniques of system theory with linguistic methods of dealing with imprecise

or incomplete information. This produces a unified approach suitable for the engineering needs

of the future. The theory may be thought of as the result of the intersection of the three
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major disciplines of Artificial Intelligence, Operations Research. and Control Theory (Figure

1). This research is aimed to establish Intelligent Controls as an engineering discipline, and

it plays a central role in the design of Intelligent Autonomous Systems.

Intelligent Control can be considered as a fusion between the mathematical and linguistical

methods and algorithms applied to systems and processes. They utilize the results of cognitive

systems research effectively with various mathematical programming control techniques.

The control intelligence is hierarchically distributed according to the Principle of Precision

with Decreasing Intelligence (IPDI). evident in all hierarchical management systems, and it

is further discussed in a future section (Saridis 1988b). They are composed of three basic

levels of controls even though each level may contain more than one layer of tree-structured

functions (Saridis 1979) (Figure 2):

1. The organization level.

2. The coordination level.

3. The execution level.

The functions involved in the upper levels of an intelligent machine are imitating functions

of human behavior and may be treated as elements of knowledge-based systems. Actually, the

activities of planning, decision making, learning, data storage and retrieval, task coordination.

etc.. may be thought of as knowledge handling and management. Therefore, the flow of

knowledge in an intelligent machine may be considered as the key variable of such a system,

Knowledge flow in an intelligent machine represents respectively (Figure 3):

1. Data Handling and Management.

2. Planning and Decision performed by the central processing units.

3. Sensing and Data Acquisition obtained through peripheral devices.

4. Formal Languages which define the software.

Subjective probabilistic models are assigned to the individual functions. Thus. their

entropies may be evaluated for every task executed. This provides an analytical measure of

the total activity,

Artificial Intelligence methods, using among other logic functions have been used to im-

plement Intelligent Machines (Albus 1975. Meystel 1985, Nielsen Genesereth 1988). However,
they lack that rigor and precision that analytic techniques provide. Nevertheless new method-

ologies have been adapted to analytic models to perform tasks at the various levels of an

Intelligent Machines.

Saridis and Moed (1989). proposed a neural net approach to perform reasoning, planning
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and decision making in the organization level of an Intelligent Machine. A Boltzmann machine,

suitable for the discrete binary state model of this particular level, is a natural device for

organizing actions and rules necessary for the execution of a given command, regardless of

the particular world model the machine is inhabiting.

Wang and Saridis (1988) proposed a Petri-net transducer to implement the Linguistic

Decision Schemata (Saridis and Graham 1984). which serve as model coordinators and decision

makers at the machine's coordination level. These devices set up the communication protocols.

with the help of small real-time memories, and serve apply in real time the rules generated

by the organization level to properly generate and sequence the subtasks in the particular

environment of the machine, in order to execute the given original command.

Finally. Saridis (1988a) was able to reformulate the system control problem to use entropy

as a control measure and therefore integrate all the hardware activities associated with the

Intelligent Machine with the other levels regardless of the discipline they belong to. Thus,

vision coordination, motion control, path planning, force sensing, etc.. in a robot paradigm.

may be integrated into the pertinent actions of the machine and evaluated by common entropy
functions.

Since all levels of a hierarchical intelligent control can be measured by entropies and their

rates, then the optimal operation of an "intelligent machine" can be obtained through the

solution of mathematical programming problems.

Another development of this theory is a structure of the "nested hierarchical" systems

(Meystel. 1.986). Even when the hierarchy is not tree-like, still using hierarchy is beneficial

since the hierarchy of resolutions (errors per level) helps to increase the e_ectiveness of the
system under limited computing power which is important to mobile systems.

The various aspects of the theory of hierarchically intelligent controls may be summarized
as follows:

The theory of intelligent machines may be postulated as the mathematical problem of

finding the right sequence of decisions and controls for a system structured according

to the principle of increasing precision with decreasing intelligence (constraint) such

that it minimizes its total entropy.

The above analytic formulation of the "intelligent machine problem" as a hierarchically

intelligent control problem is based on the use of entropy as a meansure of performance at all

the levels of the hierarchy. It has many advantages because of the tree-like structure of the
decision making process, and brings together functions that belong to a variety of disciplines.

The complete development of this theory and its integration with the other theoretical issues

of the Intelligent Autonomous System is the main task of this paper.
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3. SOME DEFINITIONS AND THE IPDI

3.1 Definitions

It remains to investigate the general concepts of Intelligent Control Systems which per-
tain to the fundamental functions Intelligent Machines. Such are the notions of Machine

Knowledge, its Rate and Precision.

Def. 1. Machine Knowledge is defined to be the structured information acquired and applied
to remove ignorance or uncertainty about a specific task pertaining to the Intelligent
Machine.

Knowledge is a cumulative quantity accrued by the machine and cannot be used as a variable

to execute a task. Instead. the Rate of Machine Knowledge is a suitable variable.

Def. 2. Rate of Machine Knowledge is the flow of knowledge through an Intelligent Machine.

Intelligence is defined by the American Heritage Dictionary of the English Language (1969)
as: Intelligence is the capacity to acquire and apply knowledge.

In terms of Machine Intelligence, this definition may be modified to yield:

Def. 3. Machine Intelligence (MI) is the set of actions or rules which operates on a data-base

(DB) of events to produce flow of knowledge (R).

On the other hand, one may define Precision as follows:

Def. 4. Imprecision is the uncertainty of execution of the various tasks of the Intelligent
Machine.

and

Def. 5. Precision is the complement of Imprecision, and represents the complexity of a

process.

Analytically, the above relations may be summarized as follows:

Knowledge (K) representing a type of information may be represented as

K = -o_ - lnp(K) (i)

where p(K) is the probability density of Knowledge.

From equation (1) the probability density function p(K) satisfies the following expression

in agreement with Jaynes' principle of Maximum Entropy (1957)"



I

!

I

m

r_

!

U

i

m _

m_

I

p(K) = e -"-K', ot = In Ix e-Kdx (2)

The Rate of Knowledge R which is the main variable of an intelligent machine with discrete
states is defined over a fix interval of time T:

K

T

It was intuitively thought (Saridis 1983). that the Rate of Knowledge must sat-

isfy the following relation which may be thought of expressing the principle of

Increasing Precision with DecreasinK Intelligence

(MZ): (DB) (R) (3)

A special case with obvious interpretation is. when R is fixed, machine intelligence is largest

for a smaller data base. e.g.. complexity of the process. This is in agreement with Varnos'

theory of Metalanguages (1986).

It is interesting to notice the resemblance of this entropy formulation of the Intelligent

Control Problem with the e-entropy formulation of the metri theory of complexity originated

by Kolomogorov (1956) and applied to system theory by Zames (1979). Both methods imply

that an increase in Knowledge (feedback) reduces the amount of entropy (e-entropy) which
measures the uncertainty involved with the system.

An analytic formulation of the above principle derived from simple probabilistic relation

among the Rate of Knowledge. Machine Intelligence and the Data Base of Knowledge. is

presented in the next section. The entropies of the various functions come naturally into the

picture as a measure of their activities.
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3.2 The Analytic Formulation of IPDI

In order to formulate mathematically the concepts of knowledge-based systems, one must

consider the state space of knowledge n, with states sl,i = 1,2,...n. They represent the

state of events at the nodes of a network defiriing the stages of a task to be executed.

Then knowledge between two states is considered as the association of the state s_ with

another state sj and is expressed as

1

= (4)



where w_j are state transition coefficients, which are zero in case of inactive transmission.

Knowledge at the state of s_ is the association of that state with all the other active

states sy and is expressed as

1
(s)
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Finally. the total knowledge of a system is considered as

and has the form of energy of the underlying events. The rate (flow) of knowledge is the

derivative of knowledge and for the discrete state space _, is defined respectively

K_ K
g_j Rk =- , R =- (7)

Riy= T ' T T

where T is a fixed time interval.

Since knowledge was defined as structured information, it can be expressed by a proba-

bilistic relation similar to the one given by Shannon. and expressed for each level by equation

(:,.):

t,,p(K_)=-_- K_ (s)

which yields a probability distribution satisfying Jaynes' Principle of Maximum Entropy

(Jaynes 1957) (For E(K} = Const.):

p(K,) = e-°'-K'; eo,= _,K,
i

The rate of knowledge is also related probabilistically by considering Ki = t_T.

V(/_) = p(R_T) = e -'_'-TR' = e -'_'-_''R' (9)
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The principle of Increasing Precision with Decreasing Intelligence is expressed probabilis-

tically by

w
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PR(MI, DB)-PR(R) (10)

where MI is the machine intelligence and DB is the data base associated with the task

to be executed and represents the complexity of the task which is also proportional to the

precision of execution. The following relation is obtained by conditioning and taking the natural

logarithms:

lnp(MI/DB) + lnp(DB) = Inp(R) (11)

m

w

m

Taking the expected value on both sides

H(MI/DB) + H(DB) = H(R) (12)

where H(x) is the entropy associated with x. For a constant rate of knowledge which is

expected during the conception and execution of a task increase of the entropy of DB requires
a decrease of the entropy of MI for the particular data base, which manifests the 1PDI. IF

MI is independent of DB then

H(MI) + H(DB) = H(R) (13)

in the case that p(MI) and p(DB) satisfy Jaynes' principle as p(R) does. where

m

i

J

i

=

l

p(MI/DB = e -a2-;'2Mrz*s

p(DB) = e -_s-;'_DB

where _ and/_ i = 2.3 are appropriate constants.

Then the entropies are rewritten as

--012 -- ]_2MIDB -- a3 -- _3DB = -_1 - #IR

and if

_i -- n'2 Jr"Of3 "_2 -- -- , ")'3 -- --

(14)

(15)
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which represents a specific but more explicit version of the Principle of Increasing Precision

with Decreasing Intelligence.

This Principle is applicable both across one level of the Intelligent Hierarchy as well as

throught the levels of the Hierarchy, in which case the flow R represents the throughput of

the system in an information theoretic manner. The partition law of information rate applies

naturally to such a system (Saridis 1985c).

The entropy of DB may be related to c-entropy as follows: A system requiring certain

(n) level of precision takes n-times the data base DB required for a simple precision. But

w

H(nDB) = Elnn + EInDB (17)

where E{Inn} is the e-entropy associated with the complexity of execution. As case study

demonstrating the validity of the above is given in Saridis and Valavanis (1988).
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4. THE ANALYTIC STRUCTURE OF THE INTELLIGENT MACHINE

In order to implement an Intelligent Machine on analytic foundations, the theory of Intel-

ligent Control has been developed by Saridis (1979), and briefly discussed in Section 2. This
theory assigns analytic models to the various levels of the machine and improve them through

a generalized concept of selective feedback.

The Intelligent Control System is composed of three levels in decreasing order of intel-

ligence and increasing order of precision as stipulated by the IPDI. However. with the better
understanding of the basics, new methodologies are proposed to analytically implement the

various functions, without significantly changing the models at each level.

The Organization Level is designed to organize a sequence of abstract actions or fules

from a set of primitives stored in a lon_-term memory regardless of the present world model.

In other words it serves as the generator of the rules of an Inference Engine by processing high
level of information (intelligence), for reasoning, planning and decision making. This can be

accomplished by a two level neural net, analytically derived as a Boltzmann machine (Saridis

and Moed 1988).

The Coordination Level is an intermediate structure serving as an interface between the

organization and execution levels. It deals with real- time information of the world by gener-

ating a proper sequence of subtasks pertinent to the execution of the original command.
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It involves coordination of decision making and learning on a short term memory, e.g.. a

buffer. It utilizes ]in/_uistic decision schemata with learning capabilities defined in Saridis and

Graham (1984). assigned subjective probabilities for each action. The respective entropies

may be obtained directly from these subjective probabilities. Petri Net transducers have been

investigated by Wang and Saridis (1988). to implement such decision schemata. In addition.

Petri-nets provide the necessary protocols to communicate among the various coordinators.

in order to integrate the activities of the Machine. Complexity functions may be used for
real-time evaluation.

The Execution Level performs the appropriate control functions. Its performance measure

can also be expressed as an entropy, thus unifying the functions of an "intelligent machine".

Optimal control theory utilizes a non-negative functional of the states of a system in

the state space, and a specific control from the set of all admissible controls, to define the

performance measure for some initial conditions, representing a generalized energy function.

Minimization of the energy functional yields the desired control law for the system.

The Principle of IPDI is applicable at every level of the Machine, reaffirming its universal

validity. However, the coordination may serve as a salient example of its application where

the intelligence provided by the organization level as a set of rules is applied to the database

provided by the execution level to produce flow of knowledge.

A more detailed description of the analytic functions of each level is given in the sequel.

4.1 The Neural-net Based Or_;anization Level

The function of the organizer, the highest level of the hierarchy of Intelligent Controls.

is based on several AI (knowledge based) concepts forming the foundations of Machine In-

telligence. These concepts translated into probabilistic models form the functions of repre-

sentation and reasoning, planning, decision making, long-term memory exchange and learning

through feedback to set up a task in response to some outside command (Fig. 3). The
probabilistic model generated provides the mechanism to select the appropriate task for the

appropriate command. The principle followed here is that instead of task decomposition a

collection of tasks is generated from a list of primitive stored in the memory and matched

against the input command applied.

To specify analytically the model of the organizer, it is essential to derive the domain of

the operation of the machine for a particular class of problems (Valavanis 1985). Assuming

that the environment is known, one may define the following sets:

The set of commands C = cl,c2 , ...,cm in natural language, received by the machine as

inputs. Each command is compiled to yield an equivalent machine code explained in the next
section.

The task command of the machine which contains a number n of independent events.
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The events E = el,e2,...,e,_ are individual primitive objects or actions el stored in the

long-term memory and repesenting tasks to be executed. The task domain indicates the

capabilities of the machine.

Activities A. are groups of events concatenated to define a complex task: e.g.. A234 =

{¢2,e3, e4}. If the events are ordered then we have an ordered activity.

A random variable x_[0.1] with a priori probabilities [1 -p_,p_] repectively, representing
the state of events is associated with each individual event e_. If the random variable x_ is

binary (either 0 or 1). it indicates whether an event e_ is inactive or active, in a particular

activity and for a particular command. If the random variables x_ are continuous (or discrete

but not binary) over [0.!]. they reflect a membership function in a fuzzy decision making
problem. At this point, we consider the x_'s to be binary.

Functions F. are internal operations on the activities A. As such. they are defined in their

right order within the organization level.

a) Machine Representation and Reasoni...ng, R. is association of the compiled command to

a number of activities and/or rules. A probability function is assigned to each activity

and/or rule and the Entropy associated with it is calculated. When rules are included

one has active reasoning (inference engine).

b) Machine Plan.ning, P. is ordering of the activities. The ordering is obtained through a

sparse matrix M of O's and l's, which indicate the proper order of the primitive events.

c) Decision Making, DM, is the function of selecting the sequence with the largest proba-

bility of success.

d) Feedback, FB. is evaluation of the cost functions and updating of the probabilities asso-

ciated with each primitive event and activity.

e) Memory Exchange, ME. is retrieval and storage of information from the long-term mem-

ory based on selected feedback data from the lower levels after the completion of the

complex task.

These functions may be implemented by a two level Neural-net. of which the nodes of the

upper level represent the primitive objects eo_ and the lower level of primitive actions relating
the objects eat of a certain task. The purpose of the organizer may be realized by a search in

the neural-net to connect objects and actions in the most likely sequence for an executab le
task.

A Boltzmann type machine may be easily formulated from the knowledge models proposed

in Section 3 for the Intelligent Machine (Figure 4). Such a machine is based on the average

flow of knowledge into node i by

u
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The probability due to the uncertainty of knowledge flow into node i. is calculated as in (9):

(19)

where

w_y is the interconnection weight between nodes i and j

wlj = 0

a; is a probability normalizing factor.

Unlike the regular Boltzmann machines, this formulation does not remove a_ when

x_ = 0. Instead, the machine operates from a base entropy level ace -_ defined as the

Threshold Node EntroDv which it tries to reduce (Saridis and Moed 1988).

The Entropy of Flow of Knowledge for one particular configuration (string of events) is

given by

1 E w_yx_xj)e'_-½ _"_j_,_::_xjH(R) = - _ p(R,)ln[p(R_)] "" _-_(o_, + (20)

i

The entropy is maximum when the associated probabilities are equation p(R_) = _ with

n the number of nodes of the network. By bounding p(Ri) from below by _ one may obtain

a unique minimization of the entropy corresponding to the most like sequence of events to be
selected.

A modified genetic algorithm, involving a global random search, has been proposed by

Moed and Saridis (1989) as a means of generating the best sequence of events that minimized

the uncertainty of connections of the network expressed by the entropy (20).

Machine learning is accomplished by feedback devices that upgrade the probabilities p,

and the weights w_y by evaluating the performance of the lower levels after a successful
iteration.

For Yk representing either p_ or wij. for the command ck. the upgrading algorithms are:

yk(tk + 1) = YkCtk) + _k(tk + 1)[_(tk.+ 1) -- ykCtk)]
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where Jk is the performance estimate, Vo_, its observed value and

if J = rain Jl,
t

otherwise
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4.2 The Coordination Level and Petri-Net Transducers

The coordination level is an intermediate structure serving as an interface between the

organization and the execution level. It is essential for dispatching and communicating or-

ganizational information to the execution level. Its objective is the actual formulation of the

control problem associated with the most probable complete and compatible plan generated

by the organization level and based on real-time acquired information about the world model.

The coordination level is composed of a dispatcher and a number of specialized coordina-

tors (Figure 5). Specific hardware (execution devices) from the execution level is associated
with each coordinator. These execution devices execute well defined tasks when a command

is issued to them by their corresponding coordinator (Saridis and Valavanis 1988). The dis-

patcher serves as both the communicator of information from the organization level to the

coordinators and on-line exchange of data among the coordinators. A Petri Net formulation

of these activities has been recently proposed by Wang and Saridis (1988).

Petri Nets have been proposed as devices to communicate and control complex heteroge-

nous processes. These nets provide a communication protocol among stations of the process

as well as the control sequence for each one of them (Peterson 1977).

Petri Net Transducers (PNT) (Figure 6) proposed by Wang and Saridis (1988) are Petri

Net realizations of the Linguistic Decision Schemata introduced by Saridis and Graham (1984)
as linguistic decision making and sequencing devices. In addition to the on-line decision

making capability. PNT's have the potential of generating communication protocols, learning

by feedback, ideal for the communication and control of coordinators and their dispatcher in

real time. Their architecture is given in Figure 7. and may follow a scenario similar to the one

below suitable for the implementation of an autonomous intelligent robot depicted in Figure
8.

The sequence of events transmitted from the organization level is received by the dis-
patcher which requests a world model with coordinates from a vision coordinator. The vision

coordinator generates appropriate database and upon the dispatcher's command communi-

cates it to the planning coordinator which set a path for the arm manipulator. A new command

from the dispatcher sends path information to the motion controller in terms of end points,
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constraint surface and performance criteria. It also initializes the force sensor and proximity

sensor control for grasp activities. The vision coordinator is then switched to a monitoring

mode for navigation control, and so on.

The PNT can be evaluated in real-time by testing the computational complexity of their

operation which may be expressed uniformly in terms of entropy (Meystel 1986. Kolmogorov

1956). Feedback information is communicated to the coordination level from the execution
level during the execution of the applied command. Each coordinator, when accessed, issues

a number of commands to its associated execution devices (at the execution level). Upon

completion of the issued commands feedback information is received by the coordinator and

is stored in the short-term memory of the coordination level. This information is stored in the

short-term memory of the coordination level. This information is used by other coordinators if

necessary, and also to calculate the individual, accrued and overall accrued costs related to the
coordination level. Therefore. the feedback information from the execution to the coordination

level will be called on-line, real- time feedback information. More details about the feedback

mechanism are given in the corresponding sections where the functions of each coordinator

are explained.

4.3 The Execution Level With Entropy Measures

The cost of control problem at the hardware level can be expressed as an entropy which

measures the uncertainty of selecting an appropriate control is execute a task. By selecting

an optimal control, one minimizes the entropy, e.g.. the uncertainty of execution. The entropy

may be viewed in the respect as an energy in the original sense of Boltzmann. as in Saridis

(1985).

Optimal control theory utilizes a non-negative functional of the state of the system

x(t)_= the state space, and a specific control u(x,t)_n_, x T,n_ c n= the set of all
admissible feedback controls, to define the performance measure for some initial conditions

xo(to), representing a generalized energy function, of the form

V(=o,to)= (21)
0

where L(x, t, u(x, t) > 0. subject to differential constraints dictated by the underlying process

==.f(=,,,(=,t)); =(to)==o; (22)

m
with M! a maninfold in n=. The trajectories of the system (21) are defined for a fixed but

arbitrarily selected control u(x, t) from the set of admissible feedback control N,_.

In order to express the control problem in terms of an entropy function, one may assume

that the performance measure V(xo, to, u(x, t)) is distributed in Ct_ according to the probability

u

n
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density p(u(x,t)) of the controls u(x,t)enu. The entropy H(u) corresponding to the density
is defined as
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H(=)=

and represents the uncertainty of selecting a control u(x, t) from all possible admissible feed-

back controls f_,. The optimal performance should correspond to the maximum value of the

associated density p(u(z,t)). Equivalently, the optimal control u*(x,t) should minimize the

entropy function H(u).

This is satisfied if the density function is selected to satify Jaynes' Principle of Maximum

Entropy (1956). e.g..

P(UCx, t)) = cexp{V(xo, to,u(x,t))} (23)

It was shown by Saridis (1985b) that the expression H(u) representing the entropy for

a particular control action u(x, t) is given by

H(u) = fn p(z,u(z,t))V(x,t,u(z,t))dx
U

= E__{V(zo, to,u(z,t))} (24)

This implies that the average performance measure of a feedback control problem correspond-

ing to a specifically selected control, is an entropy function. The optimal control u * (x, t) that

minimizes V (x,t, u(x, t)). maximizes p(x, u(z, t)). and consequently minimizes the entropy
HCf).
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u*: E_V{z,t,u*(z,t)}

= vC ,t, C ,tl)pC C ,tlle 
Z

(25)

This statement establishes equivalent measures between information theoretic and optimal
control problem and provides the information and feedback control theories with a common

measure of performance.

This optimal control theory designed mainly for motion control, can be implemented for

vision control, path planning and other sensory system pertinent to an Intelligent Machine

by slighly modifying the system equations and cost functions. After all one is dealing with

real-time dynamic systems which may be modeled by a dynamic set of equations.
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5. DISTRIBUTED MACHINE INTELLIGENT SYSTEMS

In the real world, distributed systems and hierarchical system co-exist in harmony. The

human organism is a typical example of this statement.

Distributed Artificial Intelligence (DAI) is a discipline concerned with treating problems

that require multiple solvers in parallel by invoking artificial intelligence techniques (Decker

1987). When utilized to control intelligent machines working in parallel, it can be interpreted

as Distributed Machine Intelligence (DMI) where the intelligence processing is referred to the

autonomous abilities of the machines involved as with simple hierarchically intelligent control

ease (Saridis 1986): This corresponds more to the distributed problem solving process and

may be thought of as composed of two components:

Distributed Machine Intelligence

1. Control

2. Communications.

Distributed Control can be performed in two difTerent ways:

1_. Control by a meta level

2. Control by majority vote.

The first method is an extension of the hierarchical approach where the coordination.

decision maing and subtask assignment is deferred to a higher level of intelligence imbed-

ded in the dispatcher of the intelligent machines (see Figure 5). The cooperative activities

should be planned, scheduled and sequence in this device and communicated continuously for

the machines. Feedback from the environment should be communicated continously for the

evaluation of the team work performed.

The second method deals with cooperative approach of machines operating in the same

environment and performing tasks that require scheduling and task assignment. Majority

vote may provide the proper planning and sequencing of the various tasks to be performed

in unison by all the intelligent machines involved. The majority vote could be taken in a poll

place equally accessed by all the machine and communicated back to them in the appropriate

sequence.

The communication problem plays a paramount role in distributed machine intelligence.

It may be performed by a large communication network in the case of wide spacially distributed

machines or by a computer bus when dealing with a tightly built system of devices. The main

design considerations of a communication system are:

1. The system configuration .

2. The protocol, and
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3. The treatment of uncertainty of information.

The first item deals with the selection of the proper structure of the network. Two types

suitable for the appropriate control categories are:

1. Star Connection

2. Ring Connection.

The second item is essential for the most efficient operation of the system and the

optimization of the information exchange among the intelligent machines. The computer

literature contains many sources of information about protocols as in Lampson. Paul and

Siegert (1981).

The third item deals with ability of the communications system to deal with uncertain

and incomplete information. The problem of reliability for accurate and precise transmission

and reception of information is essential. The classical Shannon's information theory methods

are applicable here (Shannon and Weaver, 1963).

Finally. as mentioned earlier, distributed machine intelligence may be applied to coordi-

nate a number of cooperating intelligent machines or to organize a number of coordinators

within the same machine. In both cases, such a structure can work in harmony with the hi-

erarchically intelligent control structure of Saridis (1983). The reason is that the hierarchical

stratification refers to the intelligence of the machine and the IPDI needs only to be general-

ized from a vertical to a horizontal deployment. In other words, the IPDI should be assigned

to all directions of flow of knowledge to represent all the trade-off's between intelligence and
complexity.

6. APPLICATION TO ROBOTIC SYSTEMS

The theory of Intelligent Controls has direct application to the design of Intelligent Robots.
The IPDI provides a means of structuring hierarchically the levels of the machine. Since for

a passive task the flow of knowledge through the machine must be constant, it assigns

the highest level with the highest machine intelligence and smallest complexity (size of data
base), and the lowest level with the lowest machine intelligence and largest complexity. Such

a structure agrees with the concept of most organizational structures encountered in human

societies. Application to machine structures is straight forward.

Even at the present time there is a large Variety of applications for intelligent machines.

Automated material handling and assembly in an automated factory, automation inspection.

sentries in a nuclear containment are some of the areas where intelligent machines have and

will find a great use. However. the most important application for the author's group is

the application of Intelligent Machinesto unmanned space exploration where, because of the

distance involved, autonomous anthropomorphis tasks must be executed and only general

commands and reports of executions may be communicated.
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Such tasks are suitable for intelligent robots capable of executing anthropomorphic tasks

in unstructured uncertain environments. They are structured uncertain environment. They are

structured usually in a human-like shape and are equipped with vision and other tactile sensors

to sense the environment, two areas to execute tasks and locomotion for appropriate mobility

in the unstructured environment. The controls of such a machine are performed according to

the theory of Intelligent Machines previously discussed (Saridis and Stephanou 1977). (Saridis

1983, 1985a. 1985b. 1988a). (Meystel 1985. 1986). The three levels of controls, obeying
the Principle of Increasing Precision with Decreasing Intelligence. are presently tested on two

PUMA 600 robot arms with stereo vision and force sensing with the structure of Figure 7.

7. CONCLUSIONS

A revision of the analytic formulation of Intelligent Machines developed by the author and

his colleagues, has been proposed in this paper. The realization of the Machine is obtained

through the application of Hierarchically Intelligent Control based on a better understanding of

the Principle of Increasing Precision (complexity) with Decreasing Intelligence. which utilizes

a three level structure. The upper level is implemented through a Boltzmann machine capable

of task planning at an abstract level. The coordination level composed of a dispatcher and

several coordinators are implemented by Petri Net Transducers. as realization of Linguistic

Decision Schemata. Finally. the execution level may be modeled by a set dynamic system

with entropy as a cost function, unifying the evaluation various processes.

Optimality is still searched at the individual levels. Total optimization, a mathematical

programming problem is still to be investigated.

The application of interest to the author is presently Intelligent Machines for unmanned

space exploration.
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